
BDI Core trust Protocol
Performance Baseline Test

basic data
infrastructure

2

Colophon

basic data
infrastructure

BDI Core trust Protocol Performance Baseline Test

Authors
George Zachiotis
Laurens Paardekam
Huibert Alblas

Januari 2024

3

Summary

The Basic Data Infrastructure (BDI) framework is an infrastructure framework for controlled data
sharing, supporting automated advanced information logistics within next-generation data eco-systems.
Departing from traditional messaging paradigms, the BDI shifts towards event-driven information
collection at the source, fostering efficient and secure communication through proven publish-and-
subscribe architectures.

The BDI extends the concept of Data Spaces into the physical domain, aligning with established
and innovative practices in data sharing integral to operations and supply chains. A comprehensive
system of (legal) agreements is imperative to automate and control mutual communication effectively
and trustworthy. This system, encapsulated within the BDI, balances control (determining who can
access or utilize specific data) and efficiency (enabling automated processing).
Key features include:

•	 Digital Trust
	 -	 Control over data through 'collecting data at the source';
	 -	 Certainty about digital identities;
	 -	 High-security standards;
	 -	 Contractual basis for autonomous system-to-system communication;
	 -	 Agreements on Language and Concepts.

•	 Semantics for automatic processing
	 -	 Mutual understanding of data formats and models for effective communication.

•	 Event-Based Alerts
	 -	 Automatic signaling for timely and efficient operations;
	 -	 Immediate awareness of relevant changes in reality.

The core digital trust protocol is based upon the iSHARE framework. In this report the term Distributed
Information Access Control (DIAC) is used for the core protocol.

In order to be able to establish a baseline for performance and resources need for deployment, a
proof of concept has been developed and tested in a Cloud Based server.

Based on the performed tests it seems that the components of the system included in the cost
estimation can handle up to 1000 concurrent users in the tested scenario. When the rate limiter in
the authorization registry is increased, it could be expected that the entire system can handle 1000
concurrent users. With the current configuration a 100 concurrent users can be served. Which
would already be plenty for most of the usecases currently discussed.

The cost of the cloud server as configured is around Euro 3,08 per day, which is not prohibitive.

4

Contents

1	 Introduction	 5
	 1.1	 BDI	 5

2	 Web Load Performance Testing	 6
	 2.1	 System description	 6
	 2.2	 Testing tools	 6
	 2.3	 Testing infrastructure	 6
	 2.4	 Testing strategy	 7
	 2.5	 Testing process pre-conditions	 7
	 2.6	 Testing process post-conditions	 7
	 2.7	 First use-case scenario	 8
	 2.8	 Second use-case scenario	 9
	 2.9	 Third use-case scenario	 10
	 2.10	Fourth use-case scenario	 11
	 2.11	 Summary	 12

3	 Recurring Costs Estimations	 13
	 3.1	 Recurring costs of operation for DIAC server	 13

4	 Failure Effects Assessment	 14
	 4.1	 Failure Points and effects	 14

5	 Appendix: Service Level Agreement (SLA) considerations	 15
	 5.1	 Purpose	 15
	 5.2 	 Description & Scope	 15
	 5.3	 Responsiveness	 15
	 5.4	 Service level objectives	 16
	 5.5.	 Monitoring	 16
	 5.6	 Penalties	 16

Appendix	
	 I	 First use-case scenario performance tests results	 17
	 II	 Second use-case scenario performance tests results	 18
	 III	 Third use-case scenario: Data Posting	 19
	 IV	 Fourth use-case scenario: Data Posting	 20

5

Introduction

1.1 BDI
The Basic Data Infrastructure (BDI) framework is an infrastructure framework for controlled data
sharing, supporting automated advanced information logistics within next-generation data eco-systems.
Departing from traditional messaging paradigms, the BDI shifts towards event-driven information
collection at the source, fostering efficient and secure communication through proven publish-and-
subscribe architectures.

The BDI extends the concept of Data Spaces into the physical domain, aligning with established and
innovative practices in data sharing integral to operations and supply chains. A comprehensive system
of (legal) agreements is imperative to automate and control mutual communication effectively and
trustworthy. This system, encapsulated within the BDI, balances control (determining who can access
or utilize specific data) and efficiency (enabling automated processing). Key features include:

•	 Digital Trust
	 -	 Control over data through 'collecting data at the source';
	 -	 Certainty about digital identities;
	 -	 High-security standards;
	 -	 Contractual basis for autonomous system-to-system communication;
	 -	 Agreements on Language and Concepts.

•	 Semantics for automatic processing
	 -	 Mutual understanding of data formats and models for effective communication.

•	 Event-Based Alerts
	 -	 Automatic signaling for timely and efficient operations;
	 -	 Immediate awareness of relevant changes in reality.

The core digital trust protocol is based upon the iSHARE framework. In this report the term Distributed
Information Access Control (DIAC) is used for the core protocol.

In order to be able to establish a baseline for performance and resources need for deployment, a
proof of concept has been developed and tested in a Cloud Based server.

This report aims to present and comment on the entire system’s Web Load Performance, Recurring
Costs and Failure Effect Assessment.

1

6

Web Load Performance Testing

2.1 System description
The DIAC system architecture is presented in Figure 1. It consists primarily of a Web API serving
HTTPS requests to multiple Web Clients. For a user login request, the DIAC system may retrieve an
authentication token from the BDI Authorization Register server. For other kind of requests, a token
may be validated in the same component. The Triple Store serves as the interface to the Legacy
Database. At fixed, regular time intervals data is synchronized between the two.

2.2 Testing tools
JMeter was selected a performance testing tool, as it is a standalone, cross-platform, has a large
community, support different communication protocols, has shallow learning curve, is open source
and can be run in CLI mode. JMeter allows to configure powerful Web-Load tests for Web APIs and
Network Interfaces. The client was a clean image of windows 11, hosted in Azure, to prevent external
factors from interfering with the test.

2.3 Testing infrastructure
In a federated environment the tools and underlying infrastructure can differ, as they are organized by
different parties. The underlying infrastructure is listed in this paragraph as it provides a reference to the
performance measurements. SaaS products often include a rate limiter, which limits the number of
incoming requests to ensure a baseline performance level for every client. Rate limiters are an artificial
bottleneck, the limit can often be increased after a negotiation with the SaaS provider. Rate limiters can
influence the response time of other components in a federated environment.

	

2

Figure 1
DIAC system

architecture
Web
Client

Web API
(DIAC)

BDIar
(Autorization

Register

Triple Store Legacy Database

COMPONENT	 INFRASTRUCTURE	 RATE LIMITER ACTIVE DURING TEST

TRIPLE STORE	 SaaS product	 Yes

WEB API	 Docker container on a ubuntu VM	 No	

	 Azure standard D2s v3

	 - 2 vcpu's

	 - 8 GiB memory	

BDI AR	 SaaS product	 Yes

WEB CLIENT	 Windows 10 virtual machine	 No

	 Azure standard D2s v3

	 - 2 vcpu's

	 - 8 GiB memory	

7

2.4 Testing strategy
In order to retrieve metrics on the system performance, the Web API’s of the various components in
the system have been load-stressed by generating high volumes of Web traffic towards it. This has
been achieved by using a number of simulated, gradually increased number of users who concurrently
executed a use-case scenario. Overall, four use-case scenarios have been examined:
i.	 Obtaining the iSHARE authentication token, and requesting data:
	 •	 Fetching an iSHARE token (URL: https://diac- tsl.westeurope.cloudapp.azure.com/			

	 connect/<...>)
	 •	 Fetching Data (URL: https://diac-tsl.westeurope.cloudapp.azure.com/Diac/
		 GetData/<...>)
ii.	 Directly request data with hardcoded authentication key:
	 •	 Fetching Data (URL: https://diac-tsl.westeurope.cloudapp.azure.com/Diac/
		 GetData/<...>)
iii.	 Directly requesting data from the backend triple store database:
	 •	 Fetching Data (URL: https://api.logistiek.triply.cc/datasets/TopsectorLogistiek/<...>)
iv.	 Directly obtaining authorization data from the authorization registry:
	 •	 Fetching an iSHARE token (URL: https://api.poort8.nl/ar-preview/ishare/connect/
		 token /<...>)
	 •	 Fetching authorization data (URL: https://api.poort8.nl/ar-preview /<...>)

The testing process has been completed in a number of successive steps, starting with a single user
executing a single use-case scenario. The concurrent use of the system was contained within a
fixed-size time span of 300 seconds. During the step, a number of HTTPS requests (usually in the
order of thousands) were executed. Upon completion, the collected data were processed to provide
industry-standard Web-Endpoints performance metrics. In the following step, the number of users
was increased and the tests repeated. The study for each use-case scenario stopped only when a
large degradation of the system’s performance had been observed.

The number of concurrent users using the system has been defined as the independent variable.
The Average Load Time for each of the HTTPS requests has been defined as the dependent variable.
The results should be able to provide an identification of the mapping between those two quantities.

2.5 Testing process pre-conditions
The system under testing had been built and deployed in the environment in which its performance
was meant to be evaluated. A clean VM, acting as client, was present in the same (sub)network as the
deployment environment. Before any of the tests have been executed, care had been taken to exit the
DIAC system’s server from a potential sleep mode status. The performance testing did not concern any
aspect of the system’s business logic. Thus, the received HTTPS responses have been only checked
about their success status.

2.6 Testing process post-conditions
The conducted performance tests aim to identify a mapping between the independent variable i.e.
the number of concurrent users concurrent executing a use-case scenario and the dependent variable
i.e. the Average Load Time of the HTTPS requests included in the aforementioned scenario.

8

2.7 First use-case scenario
This use-case scenario tests the entire sequence of calls required for the client to retrieve data. First an
iSHARE access token is being retrieved. Thereafter a second endpoint is called to retrieve the data.

Call 1: Obtaining the iSHARE authentication token
Figure 2 shows a stable load time of around 34 milliseconds up to 60 concurrent users. This is a more
or less expected performance since this kind of requests (authentication token fetching) are usually
lightweight in terms of resources usage on the server side. A slight increase of load time is observed in
the region of over 60 concurrent users and at the max, 133 milliseconds was observed in the test with
310 users. The increase in load time, at around 110 users, of this first request is most likely caused by
the increase in load time of the second request (Data Fetching).

The test results are also presented in Appendix I. The markers in Figure 2 are mapping the Number of
Users (x-axis) to the Average Load Time (y-axis) for the Complete Login Request. The point-to-point
graph line gives an estimation about the unsampled values. From the graph, three values are missing for
the upper extreme: 150 users with average load time of 54 milliseconds, 220 users with average load
time of 45 milliseconds and 310 users with 133 milliseconds1.

Call 2: Data Fetching
When testing with up to 3 users, a Load Time of around 200 milliseconds has been measured. This
number constitutes a non-standardized, thought widely accepted, very good response time for a
performing Web API. With the users increasing to 12, load times of around 1 seconds have been
measured. At that point, performance may be considered within tolerable limits. A horizontal or vertical
scaling of the system is strongly recommended when users are intended to be more than 100.

3332 33 33 35 35 37
34 36 36 35 36

43
39 38

41
45

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

194 218 616
1096

1865 2305 2531
3107

3656
4309

5160
5955

6940

7804
8821

9863
10926

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

Figure 2
First use-case

scenario-
Complete Login

3332 33 33 35 35 37
34 36 36 35 36

43
39 38

41
45

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

194 218 616
1096

1865 2305 2531
3107

3656
4309

5160
5955

6940

7804
8821

9863
10926

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

Figure 3
First use-case

scenario graph-Data
Fetching Request

1	 The cause of these anomalies is the rate limiting on the BDI AR as used.

9

The point-to-point graph line intends to give an estimation about the unsampled values. The vertical
lines in every marker, twice the Standard Deviation in length, is meant to give a qualitative measure of
the Load Time value dispersion. For readability of the graph, three values2 are not plotted in the upper
extreme: 150 users with average load time of 16,779 seconds, 220 users with average load time of
26,884 seconds and 310 users with average load time of 52,685 seconds.

2.8 Second use-case scenario
This scenario directly retrieves data from the DIAC API with a single call, instead of two calls in the
previous use-case. This is achieved by using a hardcoded authentication key. The results are
comparable to the results of the second call of the first use-case.

Call 1: Data Fetching
The test results3 are given in Appendix III and also presented in the graph of Figure 4. The markers are
mapping the Number of Users (x-axis) to the Average Load Time (y-axis) for the Data Fetching Request.

The point-to-point graph line intends to give an estimation about the unsampled values. The vertical
lines in every marker -twice the Standard Deviation in length- is meant to give a qualitative measure of
the Load Time value dispersion. For readability of the graph, three values4 are not plotted in the upper
extreme: 150 users with average load time of 16,589 seconds, 220 users with average load time of
25,060 seconds and 310 users with average load time of 36,027 seconds.

For the starting point of the study (testing with one user) and up to the testing with 3 users, a Load Time
of around 200 milliseconds has been measured. This number constitutes a non-standardized -thought
widely accepted- very good response time for a performing Web API. With the users increasing to 12,
load times of around 1 seconds have been measured. At that point, performance may be considered
within tolerable limits. A horizontal or vertical server scaling is strongly recommended when users are
intended to be more than 100.

Figure 4
Second use-case

scenario-Data
Fetching Request

200 304 707 1159
1890

2357
2832 3168

3795
4296

5173

6390

7429 7818 8898
9858

11480

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

2	 The cause of these anomalies is the rate limiting on the BDI AR as used.
3	 It is important to clarify that there is no evidence that the samples of this or any other HTTPS request in this study

are subject to Normal Distribution. While the exact distribution is considered out of context of the study, the
	 Deviation size as included in the graphs above may give a very good intuitive measure of the variability of the

request’s Load Time.
4	 The cause of these anomalies is the rate limiting on the BDI AR as used.

10

2.9 Third use-case scenario
The third use-case retrieves data directly from the Triple Store, without contacting the DIAC API &
Authorization registry. The response times are significantly better that when requesting the same data
via the DIAC API & Authorization registry.

Call 1: Data Fetching
The test results are given in Appendix II and also presented in the graph of Figure 5. The markers are
mapping the Number of Users (x-axis) to the Average Load Time (y-axis) for the Data Posting Request.
The point-to-point graph line intends to give an estimation about the unsampled values. The vertical
lines in every marker -twice the Standard Deviation in length- is meant to give a qualitative measure
of the Load Time value dispersion.

For the starting point of the study (testing with one user) and up to the testing with 40 users, a Load
Time of around 200 milliseconds has been measured. This number constitutes a non-standardized-
thought widely accepted- very good response time for a performing Web API. With the users increasing
to 90, load times of around 1 seconds have been measured. At that point, performance may be
considered within tolerable limits. A horizontal or vertical server scaling is strongly recommended
when users are intended to be more than 960.

Figure 5
Third use-case
scenario-Data

Posting Request

74
117

1177

2119

3449
4123

5016
6058

7183
8312

9304
11629

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

0 100 200 300 400 500 600 700 800 900 1000 1100

)s
m(e

miT d
oaL egarevA

Number of users (units)

128 277 674
1157

2031 2392 2823 3210
3801

4540

5263 6036
6781

7674

8529

9673

10899

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

11

2.10 Fourth use-case scenario
The fourth and last use-case contacts the Authorization registry directly, without contacting the DIAC
API. The response times are comparable to those when contacting the Authorization registry via the
DIAC API. A horizontal or vertical server scaling is strongly recommended when users are intended to
be more than 110.

Call 1: Obtaining the iSHARE authentication token
The test results are given in Appendix IV and also presented in the graph of Figure 6. The markers
are mapping the Number of Users (x-axis) to the Average Load Time (y-axis) for the Complete Login
Request.

The point-to-point graph line intends to give an estimation about the unsampled values. For readability
of the graph, three values5 are not plotted in the upper extreme: 150 users with average load time of
12528 milliseconds, 220 users with average load time of 136720 milliseconds and 310 users with
average load time of 129896 milliseconds.

For the starting point of the study (testing with one user) and up to the testing with 2 users, a Load Time
of around 200 milliseconds has been measured. This number constitutes a non-standardized -thought
widely accepted- very good response time for a performing Web API. With the users increasing to 10,
load times of around 1 second have been measured. At that point, performance may be considered
within tolerable limits. A horizontal or vertical server scaling is strongly recommended when users are
intended to be more than 110.

Figure 6
Fourth use-case

scenario-Complete
login

74
117

1177

2119

3449
4123

5016
6058

7183
8312

9304
11629

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

0 100 200 300 400 500 600 700 800 900 1000 1100

)s
m(e

miT d
oaL egarevA

Number of users (units)

128 277 674
1157

2031 2392 2823 3210
3801

4540

5263 6036
6781

7674

8529

9673

10899

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

5	 The cause of these anomalies is the rate limiting on the BDI AR as used.

12

Call 2: Fetching authorization data
The test results are given in Appendix IV and also presented in the graph of Figure 7. The markers are
mapping the Number of Users (x-axis) to the Average Load Time (y-axis) for the Data Posting Request.

The point-to-point graph line intends to give an estimation about the unsampled values. The vertical
lines in every marker -twice the Standard Deviation in length- is meant to give a qualitative measure
of the Load Time value dispersion.

For readability of the graph, three values6 are not plotted in the upper extreme: 150 users with average
load time of 12,915 seconds, 220 users with average load time of 229,982 seconds and 310 users with
average load time of 231,007 seconds.

For the starting point of the study (testing with one user) and up to the testing with 2 users, a Load
Time of around 200 milliseconds has been measured. This number constitutes a non-standardized
-thought widely accepted- very good response time for a performing Web API. With the users
increasing to 10, load times of around 1 seconds have been measured. At that point, performance may
be considered within tolerable limits. A horizontal or vertical server scaling is strongly recommended
when users are intended to be more than 100.

2.11 Summary
Based on the performed tests it seems that the components of the system included in the cost
estimation can handle up to 1000 concurrent users in the tested scenario. When the rate limiter in
the authorization registry is increased, it could be expected that the entire system can handle 1000
concurrent users. With the current configuration a 100 concurrent users can be served. Which would
already be plenty for most of the usecases currently discussed within Topsector Logistics. The rate
limiting on the AR used is the explanation for the data points with excessive response times.

Figure 7
Fourth use-case

scenario-Data
Posting Request

149 296 727
1262

2059 2445 2886 3341
3877

4620
5326

6292
6994

7936

8894

10229

11364

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

6	 The cause of these anomalies is the rate limiting on the BDI AR as used.

13

Recurring Costs Estimations

3.1 Recurring costs of operation for DIAC server
The cost analysis has been conducted in reference to the Cloud Computing Platform (Microsoft Azure)
used to host the current DIAC server Virtual Machine. The pricing data for this installation can only be
seen as an estimation, as specific implementations may vary. The costs are presented in Table 1.
They are concerning the system’s components using the DIAC server. This does not include the BDI
Authorization Register.

3

Service Name	 Meter	 Cost	 Granularity

Storage	 P4 LRS Disk	 € 0,17	 Daily

Bandwidth	 Inter Continent Data

	 Transfer Out - NAM or EU To Any	 € 0,00	 Daily

Bandwidth	 Intra Continent Data Transfer Out	 € 0,03	 Daily

Bandwidth	 Standard Data Transfer Out - Free	 € 0,00	 Daily

Virtual Machines	 D2 v3/D2s v3	 € 2,62	 Daily

Container Registry	 Basic Registry Unit	 € 0,15	 Daily

Virtual Network	 Standard IPv4 Static Public IP	 € 0,11	 Daily

SUM		 € 3,08	 Daily

Table 1
Repeating costs
per resource per

day - obtained on
01-09-2023

14

Failure Effects Assessment

4.1 Failure Points and effects
Possible failing points along with their consequences are presented in Table 2. Their granularity is on the
system component level as shown in Figure 1. All components can be marked as ‘critical’ for the system
to function, except for the internal legacy database.

4

Failing point	 Consequence	
	
Web Client fails	 There should be no consequence for the system and the rest of the clients.

	 The specific client will not be able to use the DIAC system.

Web API fails	 No end-user should be able to use the DIAC System.

	 The Triple Store will still be able to provide data synchronization.

Triple Store fails	 End users are unable to fetch data.

BDI Authorization	 End users should only be able to use the functionality of the system that

Register fails	 requires no authentication.

Legacy Database	 End users should be only be able to fetch outdated data.

fails

Table 2
Failing points and
their effect on the

system performance

15

Appendix

Service Level Agreements (SLA) considerations
Service level agreements are common between (IT) Service providers and their customers. This should
not be any different in a federated environment. However, in a federated environment it is common
that multiple providers, with multiple IT systems, rely on each other to fulfill a single data request by a
single end user. In the situation that an organization sources multiple external IT providers itself, the
effect of the SLA’s on the availability of their service should be taken in account.

The content of an SLA can be made specific for every usecase, in this chapter the main items that
should be in an SLA are discussed.

5.1 Purpose
A Service Level Agreement (SLA) is a contract between a service provider and its clients, meant to state
commitment on the availability and continuity of a service. An SLA can also be used between a service
provider and an external maintenance party, whose job it is to solve problems that can jeopardize the
availability of the service.

5.2 Description & Scope
This describes the service or application for which the SLA will be made. What parts are in scope of
the SLA, and what parts are out? The responsibilities of the service provider and third party will be
described as well. Lastly the service hours will be described: will there be a 24h service or only service
during office hours?

5.3 Responsiveness
This describes how quickly there will be acted on incidents. The responsiveness can change during
the day: in some cases, it could be acceptable that the responsiveness is lower during off-peak hours.

16

5.4 Service level objectives
This states goals of how well the system or service should perform. These targets should be
measurable. Some relevant examples for this DIAC system:

•	 Uptime/availability
`	 -	 The service can be fully offline because of updates or unplanned issues. How may minutes a 		

	 year is the service allowed to be offline?

•	 Response time/latency
	 -	 When the end user sends a request to the service, what would be the maximum duration for the 	

	 service to respond?

•	 Data retention/backups
	 -	 How are data backups handled on this service? If data loss occurs, how many hours of data 		

	 would be lost when restoring a backup?

•	 Scaling of resources
	 -	 When the service receives an unplanned amount of extra requests, causing the service to slow 	

	 down, the service could decide to scale up extra resources. How fast should this up- and 		
	 downscaling happen?

•	 Update policies
	 -	 If updating the service causes breaking changes to clients, this should be planned. How far
		 ahead would clients be notified and how often a year are those kinds of updates permitted? 		

	 Would alternative interfaces be provided and for how long?

5.5 Monitoring
A traditional reactive approach with submitting tickets can be sufficient, but has a downside in the
speed of the mitigation. An alternative reactive approach could be an automatic monitoring system
that alerts when issues are measured. Lastly a predictive system can be used to predict in advance
when the service might fail.

Depending on the type of service, this can be done based on bandwidth, cpu, memory usage and
predictive usage of the service. Monitoring is especially important in the scenario where multiple IT
systems, with different SLA’s, work together to provide a single service. Critical time can be lost when
trying to find the issues in the wrong IT system.

5.6 Penalties
This describes the consequences of failing to meet the SLA. This can be a financial consequence, but
depending on the use case, other types are possible as well.

17

Appendix I

First use-case scenario performance tests results

	 Users (units)	 Samples (units)	 Av. Load Time (ms)	 St. Deviation (ms)	 Throughput (units/s)

	 1	 1047	 33	 4.58	 3.5

	 3	 2880	 32	 4.59	 9.6

	 7	 2944	 33	 8.39	 9.9

	 12	 3026	 33	 14.72	 10.1

	 20	 3046	 35	 23.92	 10.2

	 24	 2978	 35	 25.79	 10

	 28	 3178	 37	 15.79	 58.72

	 32	 2993	 34	 17.23	 10

	 38	 3024	 36	 29.77	 10.1

	 44	 2977	 36	 25.53	 10

	 52	 2966	 35	 29.38	 9.9

	 60	 2978	 36	 35.47	 9.8

	 68	 2889	 43	 80.64	 9.7

	 78	 2917	 39	 61.17	 9.8

	 90	 3037	 38	 59.95	 9.9

	 100	 3005	 41	 52.93	 10.1

	 110	 2985	 45	 85.02	 10

	 150	 2689	 54	 233.26	 9

	 220	 2571	 45	 44.7	 8.7

	 310	 1773	 133	 318.26	 6.1

Table 1
Authentication

Request

	 Users (units)	 Samples (units)	 Av. Load Time (ms)	 St. Deviation (ms)	 Throughput (units/s)

	 1	 1176	 194	 123.47	 2.5

	 3	 2880	 218	 146.79	 9.6

	 7	 2943	 616	 280.6	 9.8

	 12	 3026	 1096	 334.65	 10

	 20	 3044	 1865	 570.77	 10.2

	 24	 2978	 2305	 506.09	 9.9

	 28	 3177	 2531	 661.05	 10.6

	 32	 2993	 3107	 576.96	 9.9

	 38	 3024	 3656	 654.21	 10

	 44	 2976	 4309	 776.57	 9.9

	 52	 2966	 5160	 1082.73	 9.8

	 60	 2977	 5955	 1197.72	 9.8

	 68	 2888	 6940	 160.11	 9.5

	 78	 2943	 7804	 1856.72	 9.7

	 90	 3037	 8821	 1973.28	 9.9

	 100	 3005	 9863	 2759.83	 9.7

	 110	 2985	 10926	 2257.13	 9.8

	 150	 2688	 16779	 6399.47	 8.6

	 220	 2571	 26884	 10981.55	 7.7

	 310	 1773	 52685	 11640.55	 5.5

Table 2
Data Fetching

Request

18

	 Users (units)	 Samples (units)	 Av. Load Time (ms)	 St. Deviation (ms)	 Throughput (units/s)

	 1	 1489	 200	 102.56	 5

	 3	 2953	 304	 163.1	 9.8

	 7	 2962	 707	 251.36	 9.9

	 12	 3103	 1159	 307.21	 10.3

	 20	 3176	 1890	 503.79	 10.5

	 24	 3058	 2357	 529.69	 10.1

	 28	 2971	 2832	 840.09	 9.8

	 32	 3039	 3168	 605.1	 10

	 38	 3013	 3795	 882.48	 9.9

	 44	 3091	 4296	 869.35	 10.95

	 52	 3032	 5173	 772.15	 10

	 60	 2836	 6390	 1523.23	 9.3

	 68	 2811	 7429	 2182.64	 9

	 78	 3018	 7818	 1927.4	 9.8

	 90	 3066	 8898	 299.44	 10

	 100	 3083	 9858	 2945.13	 10

	 110	 5835	 11480	 4181.3	 7.4

	 150	 2791	 16589	 6430.62	 8.8

	 220	 2707	 25060	 9940.14	 8.4

	 310	 4592	 36027	 17500.14	 5

Table 1
Data Fetching

Request

Appendix II

Second use-case scenario performance tests results

19

	 Users (units)	 Samples (units)	 Av. Load Time (ms)	 St. Deviation (ms)	 Throughput (units/s)

	 1	 3987	 74	 14.5	 13.3

	 10	 27907	 117	 37.96	 93

	 100	 25479	 1177	 936.55	 84.5

	 200	 28390	 2119	 1546.4	 93.7

	 300	 26190	 3449	 2511.16	 85.9

	 400	 29223	 4123	 1192.53	 95.7

	 500	 30008	 5016	 1535.15	 98.2

	 600	 29883	 6058	 1110.42	 97.5

	 700	 29462	 7183	 1887	 95.8

	 800	 29107	 8312	 1614.88	 94.4

	 900	 29274	 9304	 2237.99	 94.5

	 1000	 26290	 11629	 4921.24	 83

Table 1
Data Posting

Request

Appendix III

Third use-case scenario: Data Posting

20

	 Users (units)	 Samples (units)	 Av. Load Time (ms)	 St. Deviation (ms)	 Throughput (units/s)

	 1	 884	 128	 96.11	 3

	 3	 1422	 277	 161.19	 4.8

	 7	 1436	 674	 262.48	 4.8

	 12	 1451	 1157	 449.09	 4.8

	 20	 1449	 2031	 540.56	 4.8

	 24	 1468	 2392	 541.51	 4.8

	 28	 1459	 2823	 661.34	 4.8

	 32	 1458	 3210	 682.78	 4.8

	 38	 1482	 3801	 781.05	 4.9

	 44	 1444	 4540	 895.79	 4.7

	 52	 1476	 5263	 1493.24	 4.9

	 60	 1468	 6036	 1210.05	 4.8

	 68	 1493	 6781	 1357.29	 4.8

	 78	 1490	 7674	 1464.82	 4.9

	 90	 1568	 8529	 1757.08	 5.1

	 100	 1519	 9673	 1975.16	 4.9

	 110	 1515	 10899	 2431.57	 4.9

	 150	 1770	 12528	 6634.2	 5.8

	 220	 413	 136720	 95124.24	 0.8

	 310	 468	 129896	 101132	 2.66

Table 1
Authentication

Request

	 Users (units)	 Samples (units)	 Av. Load Time (ms)	 St. Deviation (ms)	 Throughput (units/s)

	 1	 884	 149	 92.27	 3

	 3	 1422	 296	 145.5	 4.8

	 7	 1436	 727	 249.35	 4.8

	 12	 1451	 1262	 417.87	 4.8

	 20	 1449	 2059	 475.94	 4.8

	 24	 1468	 2445	 465.92	 4.8

	 28	 1459	 2886	 599.49	 4.8

	 32	 1458	 3341	 656.28	 4.8

	 38	 1482	 3877	 703.33	 4.8

	 44	 1423	 4620	 795.18	 4.7

	 52	 1455	 5326	 1050.28	 4.8

	 60	 1450	 6292	 1061.57	 4.7

	 68	 1447	 6994	 1163.72	 4.8

	 78	 1469	 7936	 1128.26	 4.8

	 90	 1536	 8894	 1379.5	 5

	 100	 1488	 10229	 1637.56	 4.8

	 110	 1450	 11364	 1858.14	 4.7

	 150	 1713	 12915	 6600.13	 5.7

	 220	 220	 229982	 2377.55	 0.5

	 310	 310	 231007	 1278.78	 0.48

Table 2
Data Posting

Request

Appendix IV

Fourth use-case scenario: Complete Login

21

Topsector Logistiek
Ezelsveldlaan 59
2611 RV Delft
+31 15 251 65 65
www.topsectorlogistiek.nl

