
BDI Core trust Protocol
Performance Baseline Test

basic data
infrastructure

2

Colophon

basic data
infrastructure

BDI Core trust Protocol Performance Baseline Test

Authors
George Zachiotis
Laurens Paardekam
Huibert Alblas

Januari 2024

3

Summary

The Basic Data Infrastructure (BDI) framework is an infrastructure framework for controlled data
sharing, supporting automated advanced information logistics within next-generation data eco-systems.
Departing from traditional messaging paradigms, the BDI shifts towards event-driven information
collection at the source, fostering efficient and secure communication through proven publish-and-
subscribe architectures.

The BDI extends the concept of Data Spaces into the physical domain, aligning with established
and innovative practices in data sharing integral to operations and supply chains. A comprehensive
system of (legal) agreements is imperative to automate and control mutual communication effectively
and trustworthy. This system, encapsulated within the BDI, balances control (determining who can
access or utilize specific data) and efficiency (enabling automated processing).
Key features include:

• Digital Trust
 - Control over data through 'collecting data at the source';
 - Certainty about digital identities;
 - High-security standards;
 - Contractual basis for autonomous system-to-system communication;
 - Agreements on Language and Concepts.

• Semantics for automatic processing
 - Mutual understanding of data formats and models for effective communication.

• Event-Based Alerts
 - Automatic signaling for timely and efficient operations;
 - Immediate awareness of relevant changes in reality.

The core digital trust protocol is based upon the iSHARE framework. In this report the term Distributed
Information Access Control (DIAC) is used for the core protocol.

In order to be able to establish a baseline for performance and resources need for deployment, a
proof of concept has been developed and tested in a Cloud Based server.

Based on the performed tests it seems that the components of the system included in the cost
estimation can handle up to 1000 concurrent users in the tested scenario. When the rate limiter in
the authorization registry is increased, it could be expected that the entire system can handle 1000
concurrent users. With the current configuration a 100 concurrent users can be served. Which
would already be plenty for most of the usecases currently discussed.

The cost of the cloud server as configured is around Euro 3,08 per day, which is not prohibitive.

4

Contents

1 Introduction 5
 1.1 BDI 5

2 Web Load Performance Testing 6
 2.1 System description 6
 2.2 Testing tools 6
 2.3 Testing infrastructure 6
 2.4 Testing strategy 7
 2.5 Testing process pre-conditions 7
 2.6 Testing process post-conditions 7
 2.7 First use-case scenario 8
 2.8 Second use-case scenario 9
 2.9 Third use-case scenario 10
 2.10 Fourth use-case scenario 11
 2.11 Summary 12

3 Recurring Costs Estimations 13
 3.1 Recurring costs of operation for DIAC server 13

4 Failure Effects Assessment 14
 4.1 Failure Points and effects 14

5 Appendix: Service Level Agreement (SLA) considerations 15
 5.1 Purpose 15
 5.2 Description & Scope 15
 5.3 Responsiveness 15
 5.4 Service level objectives 16
 5.5. Monitoring 16
 5.6 Penalties 16

Appendix
 I First use-case scenario performance tests results 17
 II Second use-case scenario performance tests results 18
 III Third use-case scenario: Data Posting 19
 IV Fourth use-case scenario: Data Posting 20

5

Introduction

1.1 BDI
The Basic Data Infrastructure (BDI) framework is an infrastructure framework for controlled data
sharing, supporting automated advanced information logistics within next-generation data eco-systems.
Departing from traditional messaging paradigms, the BDI shifts towards event-driven information
collection at the source, fostering efficient and secure communication through proven publish-and-
subscribe architectures.

The BDI extends the concept of Data Spaces into the physical domain, aligning with established and
innovative practices in data sharing integral to operations and supply chains. A comprehensive system
of (legal) agreements is imperative to automate and control mutual communication effectively and
trustworthy. This system, encapsulated within the BDI, balances control (determining who can access
or utilize specific data) and efficiency (enabling automated processing). Key features include:

• Digital Trust
 - Control over data through 'collecting data at the source';
 - Certainty about digital identities;
 - High-security standards;
 - Contractual basis for autonomous system-to-system communication;
 - Agreements on Language and Concepts.

• Semantics for automatic processing
 - Mutual understanding of data formats and models for effective communication.

• Event-Based Alerts
 - Automatic signaling for timely and efficient operations;
 - Immediate awareness of relevant changes in reality.

The core digital trust protocol is based upon the iSHARE framework. In this report the term Distributed
Information Access Control (DIAC) is used for the core protocol.

In order to be able to establish a baseline for performance and resources need for deployment, a
proof of concept has been developed and tested in a Cloud Based server.

This report aims to present and comment on the entire system’s Web Load Performance, Recurring
Costs and Failure Effect Assessment.

1

6

Web Load Performance Testing

2.1 System description
The DIAC system architecture is presented in Figure 1. It consists primarily of a Web API serving
HTTPS requests to multiple Web Clients. For a user login request, the DIAC system may retrieve an
authentication token from the BDI Authorization Register server. For other kind of requests, a token
may be validated in the same component. The Triple Store serves as the interface to the Legacy
Database. At fixed, regular time intervals data is synchronized between the two.

2.2 Testing tools
JMeter was selected a performance testing tool, as it is a standalone, cross-platform, has a large
community, support different communication protocols, has shallow learning curve, is open source
and can be run in CLI mode. JMeter allows to configure powerful Web-Load tests for Web APIs and
Network Interfaces. The client was a clean image of windows 11, hosted in Azure, to prevent external
factors from interfering with the test.

2.3 Testing infrastructure
In a federated environment the tools and underlying infrastructure can differ, as they are organized by
different parties. The underlying infrastructure is listed in this paragraph as it provides a reference to the
performance measurements. SaaS products often include a rate limiter, which limits the number of
incoming requests to ensure a baseline performance level for every client. Rate limiters are an artificial
bottleneck, the limit can often be increased after a negotiation with the SaaS provider. Rate limiters can
influence the response time of other components in a federated environment.

2

Figure 1
DIAC system

architecture
Web
Client

Web API
(DIAC)

BDIar
(Autorization

Register

Triple Store Legacy Database

COMPONENT INFRASTRUCTURE RATE LIMITER ACTIVE DURING TEST

TRIPLE STORE SaaS product Yes

WEB API Docker container on a ubuntu VM No

 Azure standard D2s v3

 - 2 vcpu's

 - 8 GiB memory

BDI AR SaaS product Yes

WEB CLIENT Windows 10 virtual machine No

 Azure standard D2s v3

 - 2 vcpu's

 - 8 GiB memory

7

2.4 Testing strategy
In order to retrieve metrics on the system performance, the Web API’s of the various components in
the system have been load-stressed by generating high volumes of Web traffic towards it. This has
been achieved by using a number of simulated, gradually increased number of users who concurrently
executed a use-case scenario. Overall, four use-case scenarios have been examined:
i. Obtaining the iSHARE authentication token, and requesting data:
 • Fetching an iSHARE token (URL: https://diac- tsl.westeurope.cloudapp.azure.com/

 connect/<...>)
 • Fetching Data (URL: https://diac-tsl.westeurope.cloudapp.azure.com/Diac/
 GetData/<...>)
ii. Directly request data with hardcoded authentication key:
 • Fetching Data (URL: https://diac-tsl.westeurope.cloudapp.azure.com/Diac/
 GetData/<...>)
iii. Directly requesting data from the backend triple store database:
 • Fetching Data (URL: https://api.logistiek.triply.cc/datasets/TopsectorLogistiek/<...>)
iv. Directly obtaining authorization data from the authorization registry:
 • Fetching an iSHARE token (URL: https://api.poort8.nl/ar-preview/ishare/connect/
 token /<...>)
 • Fetching authorization data (URL: https://api.poort8.nl/ar-preview /<...>)

The testing process has been completed in a number of successive steps, starting with a single user
executing a single use-case scenario. The concurrent use of the system was contained within a
fixed-size time span of 300 seconds. During the step, a number of HTTPS requests (usually in the
order of thousands) were executed. Upon completion, the collected data were processed to provide
industry-standard Web-Endpoints performance metrics. In the following step, the number of users
was increased and the tests repeated. The study for each use-case scenario stopped only when a
large degradation of the system’s performance had been observed.

The number of concurrent users using the system has been defined as the independent variable.
The Average Load Time for each of the HTTPS requests has been defined as the dependent variable.
The results should be able to provide an identification of the mapping between those two quantities.

2.5 Testing process pre-conditions
The system under testing had been built and deployed in the environment in which its performance
was meant to be evaluated. A clean VM, acting as client, was present in the same (sub)network as the
deployment environment. Before any of the tests have been executed, care had been taken to exit the
DIAC system’s server from a potential sleep mode status. The performance testing did not concern any
aspect of the system’s business logic. Thus, the received HTTPS responses have been only checked
about their success status.

2.6 Testing process post-conditions
The conducted performance tests aim to identify a mapping between the independent variable i.e.
the number of concurrent users concurrent executing a use-case scenario and the dependent variable
i.e. the Average Load Time of the HTTPS requests included in the aforementioned scenario.

8

2.7 First use-case scenario
This use-case scenario tests the entire sequence of calls required for the client to retrieve data. First an
iSHARE access token is being retrieved. Thereafter a second endpoint is called to retrieve the data.

Call 1: Obtaining the iSHARE authentication token
Figure 2 shows a stable load time of around 34 milliseconds up to 60 concurrent users. This is a more
or less expected performance since this kind of requests (authentication token fetching) are usually
lightweight in terms of resources usage on the server side. A slight increase of load time is observed in
the region of over 60 concurrent users and at the max, 133 milliseconds was observed in the test with
310 users. The increase in load time, at around 110 users, of this first request is most likely caused by
the increase in load time of the second request (Data Fetching).

The test results are also presented in Appendix I. The markers in Figure 2 are mapping the Number of
Users (x-axis) to the Average Load Time (y-axis) for the Complete Login Request. The point-to-point
graph line gives an estimation about the unsampled values. From the graph, three values are missing for
the upper extreme: 150 users with average load time of 54 milliseconds, 220 users with average load
time of 45 milliseconds and 310 users with 133 milliseconds1.

Call 2: Data Fetching
When testing with up to 3 users, a Load Time of around 200 milliseconds has been measured. This
number constitutes a non-standardized, thought widely accepted, very good response time for a
performing Web API. With the users increasing to 12, load times of around 1 seconds have been
measured. At that point, performance may be considered within tolerable limits. A horizontal or vertical
scaling of the system is strongly recommended when users are intended to be more than 100.

3332 33 33 35 35 37
34 36 36 35 36

43
39 38

41
45

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

194 218 616
1096

1865 2305 2531
3107

3656
4309

5160
5955

6940

7804
8821

9863
10926

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

Figure 2
First use-case

scenario-
Complete Login

3332 33 33 35 35 37
34 36 36 35 36

43
39 38

41
45

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

194 218 616
1096

1865 2305 2531
3107

3656
4309

5160
5955

6940

7804
8821

9863
10926

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

Figure 3
First use-case

scenario graph-Data
Fetching Request

1 The cause of these anomalies is the rate limiting on the BDI AR as used.

9

The point-to-point graph line intends to give an estimation about the unsampled values. The vertical
lines in every marker, twice the Standard Deviation in length, is meant to give a qualitative measure of
the Load Time value dispersion. For readability of the graph, three values2 are not plotted in the upper
extreme: 150 users with average load time of 16,779 seconds, 220 users with average load time of
26,884 seconds and 310 users with average load time of 52,685 seconds.

2.8 Second use-case scenario
This scenario directly retrieves data from the DIAC API with a single call, instead of two calls in the
previous use-case. This is achieved by using a hardcoded authentication key. The results are
comparable to the results of the second call of the first use-case.

Call 1: Data Fetching
The test results3 are given in Appendix III and also presented in the graph of Figure 4. The markers are
mapping the Number of Users (x-axis) to the Average Load Time (y-axis) for the Data Fetching Request.

The point-to-point graph line intends to give an estimation about the unsampled values. The vertical
lines in every marker -twice the Standard Deviation in length- is meant to give a qualitative measure of
the Load Time value dispersion. For readability of the graph, three values4 are not plotted in the upper
extreme: 150 users with average load time of 16,589 seconds, 220 users with average load time of
25,060 seconds and 310 users with average load time of 36,027 seconds.

For the starting point of the study (testing with one user) and up to the testing with 3 users, a Load Time
of around 200 milliseconds has been measured. This number constitutes a non-standardized -thought
widely accepted- very good response time for a performing Web API. With the users increasing to 12,
load times of around 1 seconds have been measured. At that point, performance may be considered
within tolerable limits. A horizontal or vertical server scaling is strongly recommended when users are
intended to be more than 100.

Figure 4
Second use-case

scenario-Data
Fetching Request

200 304 707 1159
1890

2357
2832 3168

3795
4296

5173

6390

7429 7818 8898
9858

11480

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

2 The cause of these anomalies is the rate limiting on the BDI AR as used.
3 It is important to clarify that there is no evidence that the samples of this or any other HTTPS request in this study

are subject to Normal Distribution. While the exact distribution is considered out of context of the study, the
 Deviation size as included in the graphs above may give a very good intuitive measure of the variability of the

request’s Load Time.
4 The cause of these anomalies is the rate limiting on the BDI AR as used.

10

2.9 Third use-case scenario
The third use-case retrieves data directly from the Triple Store, without contacting the DIAC API &
Authorization registry. The response times are significantly better that when requesting the same data
via the DIAC API & Authorization registry.

Call 1: Data Fetching
The test results are given in Appendix II and also presented in the graph of Figure 5. The markers are
mapping the Number of Users (x-axis) to the Average Load Time (y-axis) for the Data Posting Request.
The point-to-point graph line intends to give an estimation about the unsampled values. The vertical
lines in every marker -twice the Standard Deviation in length- is meant to give a qualitative measure
of the Load Time value dispersion.

For the starting point of the study (testing with one user) and up to the testing with 40 users, a Load
Time of around 200 milliseconds has been measured. This number constitutes a non-standardized-
thought widely accepted- very good response time for a performing Web API. With the users increasing
to 90, load times of around 1 seconds have been measured. At that point, performance may be
considered within tolerable limits. A horizontal or vertical server scaling is strongly recommended
when users are intended to be more than 960.

Figure 5
Third use-case
scenario-Data

Posting Request

74
117

1177

2119

3449
4123

5016
6058

7183
8312

9304
11629

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

0 100 200 300 400 500 600 700 800 900 1000 1100

)s
m(e

miT d
oaL egarevA

Number of users (units)

128 277 674
1157

2031 2392 2823 3210
3801

4540

5263 6036
6781

7674

8529

9673

10899

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

11

2.10 Fourth use-case scenario
The fourth and last use-case contacts the Authorization registry directly, without contacting the DIAC
API. The response times are comparable to those when contacting the Authorization registry via the
DIAC API. A horizontal or vertical server scaling is strongly recommended when users are intended to
be more than 110.

Call 1: Obtaining the iSHARE authentication token
The test results are given in Appendix IV and also presented in the graph of Figure 6. The markers
are mapping the Number of Users (x-axis) to the Average Load Time (y-axis) for the Complete Login
Request.

The point-to-point graph line intends to give an estimation about the unsampled values. For readability
of the graph, three values5 are not plotted in the upper extreme: 150 users with average load time of
12528 milliseconds, 220 users with average load time of 136720 milliseconds and 310 users with
average load time of 129896 milliseconds.

For the starting point of the study (testing with one user) and up to the testing with 2 users, a Load Time
of around 200 milliseconds has been measured. This number constitutes a non-standardized -thought
widely accepted- very good response time for a performing Web API. With the users increasing to 10,
load times of around 1 second have been measured. At that point, performance may be considered
within tolerable limits. A horizontal or vertical server scaling is strongly recommended when users are
intended to be more than 110.

Figure 6
Fourth use-case

scenario-Complete
login

74
117

1177

2119

3449
4123

5016
6058

7183
8312

9304
11629

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

0 100 200 300 400 500 600 700 800 900 1000 1100

)s
m(e

miT d
oaL egarevA

Number of users (units)

128 277 674
1157

2031 2392 2823 3210
3801

4540

5263 6036
6781

7674

8529

9673

10899

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

5 The cause of these anomalies is the rate limiting on the BDI AR as used.

12

Call 2: Fetching authorization data
The test results are given in Appendix IV and also presented in the graph of Figure 7. The markers are
mapping the Number of Users (x-axis) to the Average Load Time (y-axis) for the Data Posting Request.

The point-to-point graph line intends to give an estimation about the unsampled values. The vertical
lines in every marker -twice the Standard Deviation in length- is meant to give a qualitative measure
of the Load Time value dispersion.

For readability of the graph, three values6 are not plotted in the upper extreme: 150 users with average
load time of 12,915 seconds, 220 users with average load time of 229,982 seconds and 310 users with
average load time of 231,007 seconds.

For the starting point of the study (testing with one user) and up to the testing with 2 users, a Load
Time of around 200 milliseconds has been measured. This number constitutes a non-standardized
-thought widely accepted- very good response time for a performing Web API. With the users
increasing to 10, load times of around 1 seconds have been measured. At that point, performance may
be considered within tolerable limits. A horizontal or vertical server scaling is strongly recommended
when users are intended to be more than 100.

2.11 Summary
Based on the performed tests it seems that the components of the system included in the cost
estimation can handle up to 1000 concurrent users in the tested scenario. When the rate limiter in
the authorization registry is increased, it could be expected that the entire system can handle 1000
concurrent users. With the current configuration a 100 concurrent users can be served. Which would
already be plenty for most of the usecases currently discussed within Topsector Logistics. The rate
limiting on the AR used is the explanation for the data points with excessive response times.

Figure 7
Fourth use-case

scenario-Data
Posting Request

149 296 727
1262

2059 2445 2886 3341
3877

4620
5326

6292
6994

7936

8894

10229

11364

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

0 10 20 30 40 50 60 70 80 90 100 110 120

Av
er

ag
e

Lo
ad

 T
im

e
(m

s)

Number of users (units)

6 The cause of these anomalies is the rate limiting on the BDI AR as used.

13

Recurring Costs Estimations

3.1 Recurring costs of operation for DIAC server
The cost analysis has been conducted in reference to the Cloud Computing Platform (Microsoft Azure)
used to host the current DIAC server Virtual Machine. The pricing data for this installation can only be
seen as an estimation, as specific implementations may vary. The costs are presented in Table 1.
They are concerning the system’s components using the DIAC server. This does not include the BDI
Authorization Register.

3

Service Name Meter Cost Granularity

Storage P4 LRS Disk € 0,17 Daily

Bandwidth Inter Continent Data

 Transfer Out - NAM or EU To Any € 0,00 Daily

Bandwidth Intra Continent Data Transfer Out € 0,03 Daily

Bandwidth Standard Data Transfer Out - Free € 0,00 Daily

Virtual Machines D2 v3/D2s v3 € 2,62 Daily

Container Registry Basic Registry Unit € 0,15 Daily

Virtual Network Standard IPv4 Static Public IP € 0,11 Daily

SUM € 3,08 Daily

Table 1
Repeating costs
per resource per

day - obtained on
01-09-2023

14

Failure Effects Assessment

4.1 Failure Points and effects
Possible failing points along with their consequences are presented in Table 2. Their granularity is on the
system component level as shown in Figure 1. All components can be marked as ‘critical’ for the system
to function, except for the internal legacy database.

4

Failing point Consequence

Web Client fails There should be no consequence for the system and the rest of the clients.

 The specific client will not be able to use the DIAC system.

Web API fails No end-user should be able to use the DIAC System.

 The Triple Store will still be able to provide data synchronization.

Triple Store fails End users are unable to fetch data.

BDI Authorization End users should only be able to use the functionality of the system that

Register fails requires no authentication.

Legacy Database End users should be only be able to fetch outdated data.

fails

Table 2
Failing points and
their effect on the

system performance

15

Appendix

Service Level Agreements (SLA) considerations
Service level agreements are common between (IT) Service providers and their customers. This should
not be any different in a federated environment. However, in a federated environment it is common
that multiple providers, with multiple IT systems, rely on each other to fulfill a single data request by a
single end user. In the situation that an organization sources multiple external IT providers itself, the
effect of the SLA’s on the availability of their service should be taken in account.

The content of an SLA can be made specific for every usecase, in this chapter the main items that
should be in an SLA are discussed.

5.1 Purpose
A Service Level Agreement (SLA) is a contract between a service provider and its clients, meant to state
commitment on the availability and continuity of a service. An SLA can also be used between a service
provider and an external maintenance party, whose job it is to solve problems that can jeopardize the
availability of the service.

5.2 Description & Scope
This describes the service or application for which the SLA will be made. What parts are in scope of
the SLA, and what parts are out? The responsibilities of the service provider and third party will be
described as well. Lastly the service hours will be described: will there be a 24h service or only service
during office hours?

5.3 Responsiveness
This describes how quickly there will be acted on incidents. The responsiveness can change during
the day: in some cases, it could be acceptable that the responsiveness is lower during off-peak hours.

16

5.4 Service level objectives
This states goals of how well the system or service should perform. These targets should be
measurable. Some relevant examples for this DIAC system:

• Uptime/availability
` - The service can be fully offline because of updates or unplanned issues. How may minutes a

 year is the service allowed to be offline?

• Response time/latency
 - When the end user sends a request to the service, what would be the maximum duration for the

 service to respond?

• Data retention/backups
 - How are data backups handled on this service? If data loss occurs, how many hours of data

 would be lost when restoring a backup?

• Scaling of resources
 - When the service receives an unplanned amount of extra requests, causing the service to slow

 down, the service could decide to scale up extra resources. How fast should this up- and
 downscaling happen?

• Update policies
 - If updating the service causes breaking changes to clients, this should be planned. How far
 ahead would clients be notified and how often a year are those kinds of updates permitted?

 Would alternative interfaces be provided and for how long?

5.5 Monitoring
A traditional reactive approach with submitting tickets can be sufficient, but has a downside in the
speed of the mitigation. An alternative reactive approach could be an automatic monitoring system
that alerts when issues are measured. Lastly a predictive system can be used to predict in advance
when the service might fail.

Depending on the type of service, this can be done based on bandwidth, cpu, memory usage and
predictive usage of the service. Monitoring is especially important in the scenario where multiple IT
systems, with different SLA’s, work together to provide a single service. Critical time can be lost when
trying to find the issues in the wrong IT system.

5.6 Penalties
This describes the consequences of failing to meet the SLA. This can be a financial consequence, but
depending on the use case, other types are possible as well.

17

Appendix I

First use-case scenario performance tests results

 Users (units) Samples (units) Av. Load Time (ms) St. Deviation (ms) Throughput (units/s)

 1 1047 33 4.58 3.5

 3 2880 32 4.59 9.6

 7 2944 33 8.39 9.9

 12 3026 33 14.72 10.1

 20 3046 35 23.92 10.2

 24 2978 35 25.79 10

 28 3178 37 15.79 58.72

 32 2993 34 17.23 10

 38 3024 36 29.77 10.1

 44 2977 36 25.53 10

 52 2966 35 29.38 9.9

 60 2978 36 35.47 9.8

 68 2889 43 80.64 9.7

 78 2917 39 61.17 9.8

 90 3037 38 59.95 9.9

 100 3005 41 52.93 10.1

 110 2985 45 85.02 10

 150 2689 54 233.26 9

 220 2571 45 44.7 8.7

 310 1773 133 318.26 6.1

Table 1
Authentication

Request

 Users (units) Samples (units) Av. Load Time (ms) St. Deviation (ms) Throughput (units/s)

 1 1176 194 123.47 2.5

 3 2880 218 146.79 9.6

 7 2943 616 280.6 9.8

 12 3026 1096 334.65 10

 20 3044 1865 570.77 10.2

 24 2978 2305 506.09 9.9

 28 3177 2531 661.05 10.6

 32 2993 3107 576.96 9.9

 38 3024 3656 654.21 10

 44 2976 4309 776.57 9.9

 52 2966 5160 1082.73 9.8

 60 2977 5955 1197.72 9.8

 68 2888 6940 160.11 9.5

 78 2943 7804 1856.72 9.7

 90 3037 8821 1973.28 9.9

 100 3005 9863 2759.83 9.7

 110 2985 10926 2257.13 9.8

 150 2688 16779 6399.47 8.6

 220 2571 26884 10981.55 7.7

 310 1773 52685 11640.55 5.5

Table 2
Data Fetching

Request

18

 Users (units) Samples (units) Av. Load Time (ms) St. Deviation (ms) Throughput (units/s)

 1 1489 200 102.56 5

 3 2953 304 163.1 9.8

 7 2962 707 251.36 9.9

 12 3103 1159 307.21 10.3

 20 3176 1890 503.79 10.5

 24 3058 2357 529.69 10.1

 28 2971 2832 840.09 9.8

 32 3039 3168 605.1 10

 38 3013 3795 882.48 9.9

 44 3091 4296 869.35 10.95

 52 3032 5173 772.15 10

 60 2836 6390 1523.23 9.3

 68 2811 7429 2182.64 9

 78 3018 7818 1927.4 9.8

 90 3066 8898 299.44 10

 100 3083 9858 2945.13 10

 110 5835 11480 4181.3 7.4

 150 2791 16589 6430.62 8.8

 220 2707 25060 9940.14 8.4

 310 4592 36027 17500.14 5

Table 1
Data Fetching

Request

Appendix II

Second use-case scenario performance tests results

19

 Users (units) Samples (units) Av. Load Time (ms) St. Deviation (ms) Throughput (units/s)

 1 3987 74 14.5 13.3

 10 27907 117 37.96 93

 100 25479 1177 936.55 84.5

 200 28390 2119 1546.4 93.7

 300 26190 3449 2511.16 85.9

 400 29223 4123 1192.53 95.7

 500 30008 5016 1535.15 98.2

 600 29883 6058 1110.42 97.5

 700 29462 7183 1887 95.8

 800 29107 8312 1614.88 94.4

 900 29274 9304 2237.99 94.5

 1000 26290 11629 4921.24 83

Table 1
Data Posting

Request

Appendix III

Third use-case scenario: Data Posting

20

 Users (units) Samples (units) Av. Load Time (ms) St. Deviation (ms) Throughput (units/s)

 1 884 128 96.11 3

 3 1422 277 161.19 4.8

 7 1436 674 262.48 4.8

 12 1451 1157 449.09 4.8

 20 1449 2031 540.56 4.8

 24 1468 2392 541.51 4.8

 28 1459 2823 661.34 4.8

 32 1458 3210 682.78 4.8

 38 1482 3801 781.05 4.9

 44 1444 4540 895.79 4.7

 52 1476 5263 1493.24 4.9

 60 1468 6036 1210.05 4.8

 68 1493 6781 1357.29 4.8

 78 1490 7674 1464.82 4.9

 90 1568 8529 1757.08 5.1

 100 1519 9673 1975.16 4.9

 110 1515 10899 2431.57 4.9

 150 1770 12528 6634.2 5.8

 220 413 136720 95124.24 0.8

 310 468 129896 101132 2.66

Table 1
Authentication

Request

 Users (units) Samples (units) Av. Load Time (ms) St. Deviation (ms) Throughput (units/s)

 1 884 149 92.27 3

 3 1422 296 145.5 4.8

 7 1436 727 249.35 4.8

 12 1451 1262 417.87 4.8

 20 1449 2059 475.94 4.8

 24 1468 2445 465.92 4.8

 28 1459 2886 599.49 4.8

 32 1458 3341 656.28 4.8

 38 1482 3877 703.33 4.8

 44 1423 4620 795.18 4.7

 52 1455 5326 1050.28 4.8

 60 1450 6292 1061.57 4.7

 68 1447 6994 1163.72 4.8

 78 1469 7936 1128.26 4.8

 90 1536 8894 1379.5 5

 100 1488 10229 1637.56 4.8

 110 1450 11364 1858.14 4.7

 150 1713 12915 6600.13 5.7

 220 220 229982 2377.55 0.5

 310 310 231007 1278.78 0.48

Table 2
Data Posting

Request

Appendix IV

Fourth use-case scenario: Complete Login

21

Topsector Logistiek
Ezelsveldlaan 59
2611 RV Delft
+31 15 251 65 65
www.topsectorlogistiek.nl

